6. Straight Chain Reactions

$\langle CI_2 - H_2 System \rangle$

The chlorine-hydrogen mixture explodes by the following mechanism after the photolytic initiation (Cl₂ + $h\nu \rightarrow 2$ Cl).

$$H_2 + \mathbf{Cl} \rightarrow HCl + \mathbf{H} \quad (reaction-1, k_1)$$
$$Cl_2 + \mathbf{H} \rightarrow HCl + \mathbf{Cl} \quad (reaction-2, k_2)$$

net:
$$H_2 + Cl_2 \rightarrow 2 HCl$$

• Once chain carriers (Cl or H) are formed, the reaction continues to proceed.

 \rightarrow Chain Reaction

The rate equation system is

$$\frac{d[Cl]}{dt} = -k_1[H_2][Cl] + k_2[Cl_2][H]$$

$$\frac{d[H]}{dt} = k_1[H_2][Cl] - k_2[Cl_2][H]$$
(6.1)
(6.2)

At the initial stage of reactions, $[H_2]$ and $[Cl_2]$ can be assumed to be constants.

By using
$$x = [Cl]$$
, $y = [H]$, $r_1 = k_1[H_2]$, and $r_2 = k_2[Cl_2]$, the rate equation system can be simplified as
 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ (6.3)
where $\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$ and $\mathbf{A} = \begin{pmatrix} -r_1 & r_2 \\ r_1 & -r_2 \end{pmatrix}$

The general solution to Eq. (6.3) is

$$\mathbf{x} = \mathbf{S} \begin{pmatrix} a_1 e^{\lambda_1 t} \\ a_2 e^{\lambda_2 t} \end{pmatrix} = a_1 \mathbf{s}_1 e^{\lambda_1 t} + a_2 \mathbf{s}_2 e^{\lambda_2 t}$$
(6.4)

where $\mathbf{S} = (\mathbf{s}_1 \ \mathbf{s}_2)$, λ_1 and λ_2 are the eigenvalues, and \mathbf{s}_1 and \mathbf{s}_2 are the corresponding eigenvectors of \mathbf{A} .

The coefficients a_1 and a_2 can be calculated from the initial condition, $\mathbf{x} = \mathbf{x}_0$ at t = 0, as

$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \mathbf{S}^{-1} \mathbf{x}_0$$
 (6.5)

Exercise 6.1

1) Derive the solution to the differential equation system (6.3) for the initial condition, $\mathbf{x}_0 = \begin{pmatrix} c_0 \\ 0 \end{pmatrix}$.

$-1, 7_2 - 2, and c_0 - 1, and$		
t	x	у
0	1	0
0.1	0.91	0.09
0.2	0.85	0.15
0.4	0.77	0.23
0.7	0.71	0.29
1.1	0.68	0.32
1.6	0.67	0.33
2.3	0.67	0.33
3	0.67	0.33

2) Fill the following table of the solution for $r_1 = 1$, $r_2 = 2$, and $c_0 = 1$, and then plot it.

Solution to exercise 6.1 1) The eigen equation is $\begin{vmatrix} -r_1 - \lambda & r_2 \\ r_1 & -r_2 - \lambda \end{vmatrix} = \lambda \{\lambda + (r_1 + r_2)\} = 0$. The eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = -(r_1 + r_2)$, and corresponding eigenvectors are $\mathbf{s}_1 = \begin{pmatrix} r_2 \\ r_1 \end{pmatrix}$ and $\mathbf{s}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. The solution is $\mathbf{x} = \frac{c_0}{r_1 + r_2} \left[\begin{pmatrix} r_2 \\ r_1 \end{pmatrix} + \begin{pmatrix} r_1 \\ -r_1 \end{pmatrix} \exp\{-(r_1 + r_2)t\} \right]$. 2) As shown in the figure to the right.

(Eigenvalues and Eigenvectors)

- Eigenvalues represent rates of changes as $exp(\lambda t)$.
- $\lambda < 0$: Converge (with time constant $|\lambda_2^{-1}| = 1/3$)
 - $\lambda = 0$: Constant (steady state)
- $(\lambda > 0 : Diverge)$
- Corresponding Eigenvectors represent the amplitude.

$$\mathbf{s}_{1} = \begin{pmatrix} r_{2} \\ r_{1} \end{pmatrix} : \text{Amplitude of constant part } \exp(0t) = 1$$
$$\mathbf{s}_{2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} : \text{Amplitude of converging part } \exp[-(r_{1} + r_{2})]$$

• Cl₂-H₂ reaction : $\lambda_1 = 0$ and $\lambda_2 < 0 \rightarrow$ exponential decay (λ_2) to a steady state (λ_1)

(Steady State)

Exercise 6.2

- 1) By assuming the steady states for both [Cl] and [H], derive the ratio of the steady-state concentrations, $[Cl]_{ss} / [H]_{ss}$. in terms of r_1 and r_2 where $r_1 = k_1[H_2]$ and $r_2 = k_2[Cl_2]$.
- 2) Then, derive the steady-state concentrations $[Cl]_{ss}$ and $[H]_{ss}$ in terms of c_0 , r_1 , and r_2 by using $[Cl]_{ss} + [H]_{ss} = c_0$.

Solution to exercise 6.2

1) (6.1) = 0 or (6.2) = 0
$$\rightarrow$$
 $r_1[Cl]_{ss} = r_2[H]_{ss}$. Thus, $[Cl]_{ss} / [H]_{ss} = r_2 / r_1$
2) $[Cl]_{ss} = \frac{c_0 r_2}{r_1 + r_2}$ and $[H]_{ss} = \frac{c_0 r_1}{r_1 + r_2}$.

 \ast This is the constant part of the solution of Exercise. 6.1

(Thermal Explosion)

- Ultimately, the Cl₂-H₂ mixture explodes by self-heating, i.e., thermal feedback.
 - $H_2 + Cl_2 \rightarrow 2$ HCl is exothermic by 185 kJ mol⁻¹.
 - Rate constants increases with temperature (cf. Arrhenius equation).