Homogeneous Kinetics

5. Elementary Reactions

(Rate Equation)

Rate of reaction:
$$mA + nB + ... \rightarrow iX + jY + ...$$

$$\upsilon = -\frac{1}{m} \frac{d[A]}{dt} = -\frac{1}{n} \frac{d[B]}{dt} = \cdots = \frac{1}{i} \frac{d[X]}{dt} = \frac{1}{j} \frac{d[Y]}{dt} = \cdots$$
(5.1)

[A], [B], ...: concentrations of A, B, ...

Rate equation

$$v = k[A]^{m}[B]^{n} \cdots$$
k: rate constant
(5.2)

Exercise 5.1

- 1) Write the rate equation for an irreversible reaction, $A \rightarrow B$ (rate const. = k_1), with respect to A, and solve the differential equation (rate equation) for the initial condition, $[A] = [A]_0$ at t = 0.
- 2) Write the rate equation for an irreversible reaction, $2A \rightarrow B$ (rate const. = k_2), with respect to A, and solve it for the initial condition, $[A] = [A]_0$ at t = 0.

Solution to exercise 5.1
1) rate equation:
$$(v =) - \frac{d[A]}{dt} = k_1[A]$$
. solution: $[A] = [A]_0 \exp(-k_1 t)$.
2) rate equation: $(v =) - \frac{1}{2} \frac{d[A]}{dt} = k_2[A]^2$. solution: $\frac{1}{[A]} = \frac{1}{[A]_0} + \frac{2}{2}k_2 t$ or $[A] = \frac{[A]_0}{1 + \frac{2}{2}k_2 t[A]_0}$.

(Elementary Reaction)

= Minimum step of reaction that obeys eq. (5.2) Examples: elementary reaction? 1) H₂ + Br₂ → 2HBr: $v = \frac{1}{2} \frac{d[HBr]}{dt} \propto \frac{[H_2][Br_2]^{3/2}}{[Br_2] + c[HBr]}$ NO · complex sequence of reactions: Br₂ → 2Br, Br + H₂ \rightleftharpoons HBr + H, H + Br₂ → HBr + Br, etc. 2) OH + H₂ → H₂O + H: $v = \frac{d[H_2O]}{dt} = k[OH][H_2]$ YES

Exercise 5.2

Argue whether the reaction, $H_2 + I_2 \rightarrow 2HI$, is an elementary reaction or not, from the following measurements for the initial rate of formation at 600 K.

exp.	$[H_2]$	$[I_2]$	$d[HI]/dt\Big _{t=0}$
#	$/ mol m^{-3}$	$/ mol m^{-3}$	$/ \text{ mol } m^{-3} \text{ s}^{-1}$
#1	0.72	0.51	0.175
#2	0.72	1.02	0.350
#3	1.44	1.02	0.700

Solution to exercise 5.2

from #1 & #2, d[HI]/dt \propto [I₂]; from #2 & #3, d[HI]dt \propto [H₂]. So, $\nu \propto$ [H₂][I₂] and this reaction <u>CAN to be an elementary reaction</u>.

* Eq. (5.2) may be accidentally satisfied. (but this is really an elementary reaction.)

(Consecutive Reactions)

Rate equations for consecutive reactions, $A \xrightarrow{k_1} B \xrightarrow{k_2} C$, with respect to [A] and [B]

$$\frac{d[A]}{dt} = -k_1[A], \quad \frac{d[B]}{dt} = k_1[A] - k_2[B], \quad \frac{d[C]}{dt} = k_2[B]$$
(5.3)

Solutions for $k_1 \neq k_2$ and for the initial conditions, $[A] = [A]_0$ and [B] = [C] = 0 at t = 0

$$[A] = [A]_{0} \exp(-k_{1}t), \quad [B] = \frac{k_{1}[A]_{0}}{k_{1} - k_{2}} \{\exp(-k_{2}t) - \exp(-k_{1}t)\},$$

$$[C] = [A]_{0} - [A] - [B]$$
(5.4)

Exercise 5.3

1) Fill the following table of solution (5.4) for $k_1 = 5$, $k_2 = 1$ and $[A]_0 = 1$ and plot [A], [B] and [C].

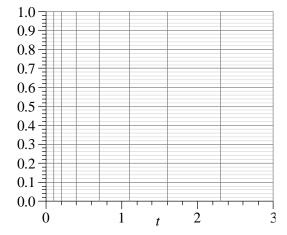
t	[A]	[B]	[C]
0	1	0	0
0.1	0.61	0.37	0.02
0.2	0.37	0.56	0.07
0.4	0.14	0.67	0.19
0.7	0.03	0.58	0.39
1.1	0	0.41	0.59
1.6	0	0.25	0.75
2.3	0	0.13	0.87
3	0	0.06	0.94

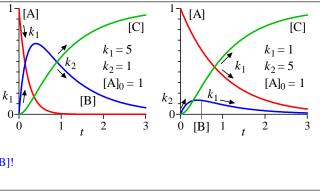
1.0-0.9 0.8 -0.7-0.6 -0.5 -0.4 0.3 0.2 0.1 0.0 -0 2 1 3

2) Describe which parts of the time-profile of [B] represent k_1 and k_2 .

3) Fill the following table of solution (5.4) for $k_1 = 1$, $k_2 = 5$ and $[A]_0 = 1$ and plot.

t	[A]	[B]	[C]
0	1	0	0
0.1	0.90	0.07	0.03
0.2	0.82	0.11	0.07
0.4	0.67	0.13	0.20
0.7	0.50	0.12	0.38
1.1	0.33	0.08	0.59
1.6	0.20	0.05	0.75
2.3	0.10	0.03	0.87
3	0.05	0.01	0.94


4) Describe which parts of the time-profile of [B] represent k_1 and k_2 .


Solution to exercise 5.3

- 1) As shown in the figure to the right.
- 2) [B] rises with $k_1 (\tau_1 = k_1^{-1} = 0.2)$ and decays with k_2 ($\tau_2 = k_2^{-1} = 1$).
- 3) As shown in the figure to the right. 4) [B] rises with k_2 ($\tau_2 = k_2^{-1} = 0.2$) and decays with k_1 ($\tau_1 = k_1^{-1} = 1$).

- * Similar (same except for the height) solution for [B]!
- * For [B], $k_1 \& k_2$ look reversed when $k_2 > k_1$.

