3. Ideal Solution

(Dissolution Equilibrium of Gas)

In dissolution equilibrium state of gas into water, $A(g) \rightleftharpoons A(aq)$:

$$\mu(g) = \mu(aq) \tag{3.1}$$

For an ideal gas and an ideal solution [from (0.6) and (0.7)]:

$$-\Delta_{\rm sol}G^{\circ} = \mu^{\circ}(g) - \mu^{\circ}(aq) = RT \ln K_{\rm sol} \qquad \text{where} \quad K_{\rm sol} \equiv \frac{b/b^{\circ}}{p/p^{\circ}} \tag{3.2}$$

(Solution Phase Equilibrium)

The CO₂(aq) dissociates in solution phase as,

 $CO_2(aq) + H_2O(l) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$ [a1]

$$HCO_{3}^{-}(aq) \rightleftharpoons H^{+}(aq) + CO_{3}^{2-}(aq)$$
 [a2]

The respective acid-dissociation constants are,

$$-\Delta_{a1}G^{\circ} = RT \ln K_{a1}$$
 where $K_{a1} = \frac{[H^+][HCO_3^-]}{[CO_2(aq)]}$ (3.3)

$$-\Delta_{a2}G^{\circ} = RT \ln K_{a2} \qquad \text{where} \quad K_{a2} \equiv \frac{[\mathrm{H}^+][\mathrm{CO}_3^{\ 2^-}]}{[\mathrm{HCO}_3^{\ -}]}$$
(3.4)

where $[H^+] \equiv b[H^+(aq)] / b^\circ$, etc.

The "apparent" dissolution equilibrium constant, $K_{\text{sol, app}} = \frac{[\text{CO}_2(\text{aq})] + [\text{HCO}_3^-] + [\text{CO}_3^{2-}]}{p(\text{CO}_2) / p^\circ}$, for a

given [H⁺] is,

$$K_{\rm sol, app} = \left\{ \left(\frac{K_{\rm a2}}{[\rm H^+]} + 1 \right) \frac{K_{\rm a1}}{[\rm H^+]} + 1 \right\} K_{\rm sol}$$
(3.5)

Exercise 3.1

1) Compute the dissolution equilibrium constant of CO_2 into water, K_{sol} , and subsequent acid-dissociation constants, K_{a1} and K_{a2} , from the following standard Gibbs energies.

$\Delta_{ m f} G^{ m s}$	°(298 K) / kJ m	ol^{-1}
$CO_2(g)$	-394.4	
$CO_2(aq)$	-386.0	
$H_2O(l)$	-237.1	
HCO ₃ ⁻ (aq)	-586.8	
$H^+(aq)$	0 *	* zero by definition
$CO_3^{2-}(aq)$	-527.8	

2) Calculate $K_{\text{sol, app}} / K_{\text{sol}}$ for pH = 4 and 8.

Solution to Exercise 3.1
1)
$$\Delta_{sol}G^{\circ} = -386.0 - (-394.4) = 8.4 \text{ kJ mol}^{-1}.$$

 $K_{sol} = \exp(-\Delta_{sol}G^{\circ} / RT) = \exp[-8400 / (8.3145 \times 298)] = 3.37 \times 10^{-2} [-] (\text{or mol kg}^{-1} \text{ bar}^{-1})$
 $\Delta_{a1}G^{\circ} = -586.8 - (-386.0 - 237.1) = 36.3 \text{ kJ mol}^{-1} \rightarrow K_{a1} = 4.34 \times 10^{-7} [-]$
 $\Delta_{a2}G^{\circ} = -527.8 - (-586.8) = 59.0 \text{ kJ mol}^{-1} \rightarrow K_{a2} = 4.56 \times 10^{-11} [-]$
2) $\text{pH} = 4: \frac{K_{sol, app}}{K_{sol}} = \left(\frac{4.56 \cdot 10^{-11}}{10^{-4}} + 1\right) \frac{4.34 \cdot 10^{-7}}{10^{-4}} + 1 = 1.004 [-].$
 $\text{pH} = 8: \frac{K_{sol, app}}{K_{sol}} = \left(\frac{4.56 \cdot 10^{-11}}{10^{-8}} + 1\right) \frac{4.34 \cdot 10^{-7}}{10^{-8}} + 1 = 44.6 [-].$

(Heat of Solution and Temperature Dependence)

The eq. (3.2) can be rewritten as,

$$K_{\rm sol} = \exp\left(\frac{\Delta_{\rm sol}S^{\circ}}{R}\right) \exp\left(-\frac{\Delta_{\rm sol}H^{\circ}}{RT}\right)$$
(3.6)

For $\Delta H < 0$ (exothermic) K^{\uparrow} as T^{\downarrow} , while for $\Delta H > 0$ (endothermic) K^{\uparrow} as T^{\uparrow} . (Le Chatelier's principle)

Exercise 3.2

The enthalpy of solution of H₂ into water is $\Delta_{sol}H^\circ = -4.2 \text{ kJ mol}^{-1}$ and the solution equilibrium constant is $K_{sol} = 7.81 \times 10^{-4} \text{ mol kg}^{-1} \text{ bar}^{-1}$ at 298 K. Estimate K_{sol} at 10 °C (283 K).

Solution to Exercise 3.2

$$\frac{K_{\text{sol}, 283}}{K_{\text{sol}, 298}} = \exp\left[-\frac{\Delta_{\text{sol}}H^{\circ}}{R}\left(\frac{1}{283} - \frac{1}{298}\right)\right] = \exp\left[-\frac{-4.2 \times 1000}{8.3145}\left(\frac{1}{283} - \frac{1}{298}\right)\right] = 1.094$$

Then, $K_{\text{sol}, 283} = 7.81 \cdot 10^{-4} \times 1.094 = \underline{8.5}_4 \times 10^{-4}$ [-] (or mol kg⁻¹ bar⁻¹).
cf.) experimental = $\underline{8.72} \times 10^{-4}$
 K_{sol} increases \uparrow as *T* decreases \downarrow . (consistent with $\Delta H < 0$; exothermic)

(Activity)

Except for the very dilute solution such as in exercise 1.3, the solution equilibrium of the electrolyte, AB(s) \rightleftharpoons A⁺(aq) + B⁻(aq), should be written with the mean activity coefficient, γ , as,

$$-\Delta_{\rm r}G^{\circ} = \mu^{\circ}[{\rm AB}({\rm s})] - \mu^{\circ}[{\rm A}^{+}({\rm aq})] - \mu^{\circ}[{\rm B}^{-}({\rm aq})]$$
$$= RT \ln\left(\frac{\gamma b[{\rm A}^{+}({\rm aq})]}{b^{\circ}}\frac{\gamma b[{\rm B}^{-}({\rm aq})]}{b^{\circ}}\right)$$
(3.7)

Exercise 3.3

1) Assuming the ideal solution, calculate the solubility S_{ideal} (mol kg⁻¹) of KCl(s) from the following data.

	$\Delta_{\rm f}G^{\circ}(298~{\rm K}) /{\rm kJ~mol^{-1}}$
KCl(s)	-409.1
$K^+(aq)$	-283.3
Cl ⁻ (aq)	-131.2

2) Evaluate the mean activity coefficient, γ , for the saturated KCl solution by using the measured solubility $S = 4.769 \text{ mol kg}^{-1}$.

Solution to Exercise 3.3

- 1) $\Delta_{\rm r}G^{\circ} = (-283.3) + (-131.2) (-409.1) = -5.4 \text{ kJ mol}^{-1}$ $b[K^{+}(aq)]b[Cl^{-}(aq)] = \exp(-\Delta_{\rm r}G^{\circ} / RT) = \exp[5.4 \times 1000 / (8.3145 \times 298)] = 8.84 \text{ mol}^{2} \text{ kg}^{-2}$ $S_{\rm ideal} = (8.84)^{1/2} = \underline{2.97} \text{ mol kg}^{-1}$
- 2) $\gamma = S_{\text{ideal}} / S = 2.97 / 4.769 = 0.623$ Trend of solubility *S* against *T* for small $|\Delta H|$ dissolution process often disturbed (looks reversed) by *T*-dep of γ .