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22..  CChheemmiiccaall  aanndd  PPhhaassee  EEqquuiilliibbrriiaa  
〈Gas-phase Chemical Equilibrium〉 

In the equilibrium state of a gas-phase reaction, A(g) + B(g) →← C(g), 
µ [C(g)] = µ [A(g)] + µ [B(g)] (2.1) 

The chemical potential of an ideal gas A at a partial pressure pA is, 





p
pRT Aln]A(g)[]A(g)[ += µµ  (0.6) 

Similar relation holds for gas B and C.  The standard Gibbs energy change of this reaction is 
∆rG° = µ° [C(g)] – µ° [A(g)] – µ° [B(g)] (2.2) 

   
Exercise 2.1 
1) Derive an equation for the relation among pA, pB, pC, and –∆rG for A(g) + B(g) →← C(g). 
2) Calculate the equilibrium constant for the reaction, H2(g) + 2

1 O2(g) →← H2O(g), at 3000 K from 
the following data. 

 

 T / K ∆fG°[H2O(g)] / kJ mol–1 [JANAF] 
   
 3000 –77.2 
   

 
 

Solution to Exercise 2.1 
1) Substitution of (0.6) to (2.1) and transformation gives 
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2) K = exp(–∆rG° / RT) = exp[77.2×1000 / (8.3145×3000)] = 22.09 [-] (or bar–1/2) 
 

 

〈Phase Equilibrium between Condensed Phases〉 
On the boundary between phase 1 and 2 in p–T plane, 

dµ (1) = dµ (2) (2.3) 
From (0.3) and (0.4), one obtains Vm(1)dp – Sm(1)dT = Vm(2)dp – Sm(2)dT, and then, 
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where ∆trsS = Sm(2) – Sm(1), ∆trsV = Vm(2) – Vm(1) 
From the definition of the entropy, 
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Exercise 2.2 
1) Calculate the standard entropy of fusion ∆fusS° of the ice from the standard enthalpy of fusion, 

∆fusH° = 6.008 kJ mol–1, at 0 °C. 
2) Estimate the melting point of ice at a pressure 136 bar from the ∆fusS above and the following 

densities of ice and water.  Ignore the pressure dependence of ∆fusS and density. 
 

  ρ(273.15 K, 1 bar) / g cm–3 
   
 H2O(l) 0.9998 
 H2O(s) 0.9168 
   



2013 Reaction Systems Engineering II (Complex Reaction Systems Analysis) 1. Chemical Equilibrium (A. Miyoshi) 4/8 

Copyright © 2008-2013 by A. Miyoshi, All rights reserved. 

 
 

Solution to Exercise 2.2 
1) ∆fusS° = 6.008×1000 / 273.15 = 22.00 J K–1 mol–1 
2) ∆fusV° = (18.02/0.9998) – (18.02/0.9168) = –1.632 cm3 mol–1 = –1.632×10–6 m3 mol–1 

dT / dp = –1.632×10–6 / 22.00 = –7.418×10–8 K Pa–1 = –7.418×10–3 K bar–1 
dT = –7.418×10–3 × (136 – 1) = –1.00 K  よって Tfus(136 bar) ~ –1.00 °C (272.15 K) 

  
 

〈Phase Equilibrium between Gas and Condensed Phases〉 
On the boundary between a condensed phase 1 and a gas phase, 

µ (1) = µ (g) (2.6) 
By ignoring the small pressure dependence of the chemical potential of a condensed phase, and using 
(0.6), 

–∆vapG° = µ °(1) – µ °(g) = RT ln(p / p°) (2.7) 
   
Exercise 2.3 
1) Calculate the vapor pressure of water at 298 K from the following data. 
 

 (298 K) ∆fH° / kJ mol–1 Sm° / J K–1 mol–1 
   
 H2O(l) –285.8 69.9 
 H2O(g) –241.8 188.8 
   

 

2) Estimate the vapor pressure of water at 100 °C (= 373 K) assuming that ∆vapH° and ∆vapS° are 
independent of temperature. 

 
 

Solution to Exercise 2.3 
1) ∆vapH° = –241.8 – (–285.8) = 44.0 kJ mol–1, ∆vapS° = 188.8 – 69.9 = 118.9 J K–1 mol–1 

∆vapG° = ∆vapH° – T∆vapS° = 44.0 – 298·118.9/1000 = 8.57 kJ mol–1 
p / p° = exp(–8.57×1000 / 8.3145·298) = 3.15×10–2, thus p = 0.0315 bar 

 

 * The pressure dependence of µ[H2O(l)] is, from (0.9), Vm(p – p°) = 1.8×10–5(3160–100000) = –1.7 J mol–1, 
 which is smaller than the smallest significant digit of ∆fG°. 

 

2) ∆vapG° = ∆vapH° – T∆vapS° = 44.0 – 373·118.9/1000 = –0.35 kJ mol–1 
p / p° = exp(+0.35×1000 / 8.3145·373) = 1.119, thus p = 1.119 bar (10% higher than 1 atm!) 

 
 


