7. Branched Chain Reactions

$\langle H_2 - O_2 \text{ System} \rangle$

The hydrogen-oxygen mixture explodes by the following mechanism.

	Δn (chain carrier)		
$O_2 + H \rightarrow O + OH$	(reaction-1, k_1)	+1	chain branching
$H_2 + O \rightarrow H + OH$	(reaction-2, k_2)	+1	chain branching
$\mathrm{H}_{2} + \mathbf{OH} \rightarrow \mathrm{H}_{2}\mathrm{O} + \mathbf{H}$	(reaction-3, k_3)	± 0	chain propagation

net: $2 H_2 + O_2 \rightarrow H_2O + OH + H$ (? ... no way to eliminate chain carriers)

• Once chain carriers (H, OH, or O) are formed, the reaction self-multiplies the chain carriers. → Branched Chain Reaction

At the initial stage of reactions, $[O_2]$ and $[H_2]$ can be assumed to be constants.

By using $r_1 = k_1[O_2]$, $r_2 = k_2[H_2]$, and $r_3 = k_3[H_2]$, the rate equation system can be written as

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$

where
$$\mathbf{x} = \begin{pmatrix} [H] \\ [O] \\ [OH] \end{pmatrix}$$
 and $\mathbf{A} = \begin{pmatrix} -r_1 & r_2 & r_3 \\ r_1 & -r_2 & 0 \\ r_1 & r_2 & -r_3 \end{pmatrix}$

Exercise 7.1

- 1) Write the eigen equation for the matrix A in Eq. (7.1), in the form of a cubic equation, $a\lambda^3 + b\lambda^2 + c\lambda + d = 0.$
- 2) Show that the matrix **A** has a positive eigenvalue. (Note that $r_1, r_2, r_3 > 0$.)

Solution to exercise 7.1

1) The eigen equation is
$$f(\lambda) = -\begin{vmatrix} -r_1 - \lambda & r_2 & r_3 \\ r_1 & -r_2 - \lambda & 0 \\ r_1 & r_2 & -r_3 - \lambda \end{vmatrix}$$

$$= \lambda^3 + (r_1 + r_2 + r_3)\lambda^2 + r_2r_3\lambda - 2r_1r_2r_3 = 0.$$
2) Since r_1, r_2 , and r_3 are positive,
 $f(0) = -2r_1r_2r_3 < 0$ and
 $f(\lambda)$ monotonically increases with λ at $\lambda > 0$.
 $\rightarrow f(\lambda) = 0$ has a root > 0 .

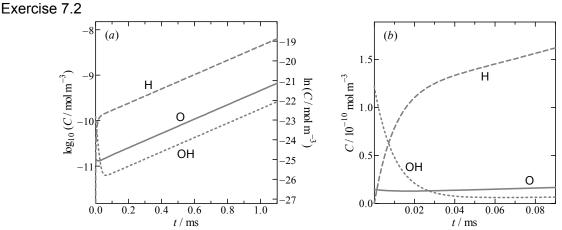
(Chain Explosion)

General solution to (7.1)

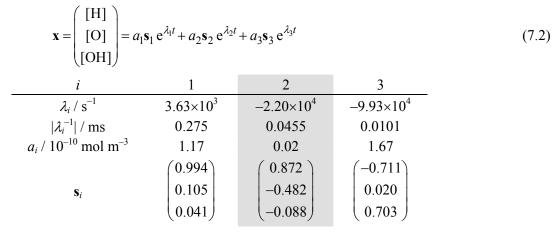
$$\mathbf{x} = \mathbf{S} \begin{pmatrix} a_1 e^{\lambda_1 t} \\ a_2 e^{\lambda_2 t} \\ a_3 e^{\lambda_3 t} \end{pmatrix} = a_1 \mathbf{s}_1 e^{\lambda_1 t} + a_2 \mathbf{s}_2 e^{\lambda_2 t} + a_3 \mathbf{s}_3 e^{\lambda_3 t}$$
(7.2)

 $\lambda < 0$: Converging term

 $\lambda = 0$: Constant term

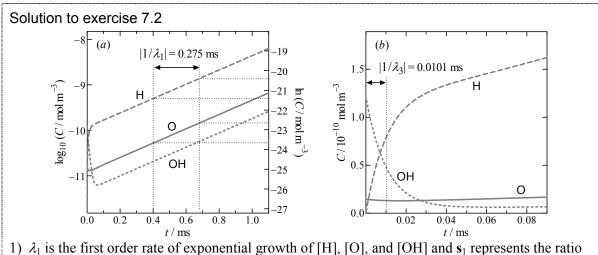

 $\lambda > 0$: <u>Diverging</u> term

• Reaction system with $\lambda_{\text{max}} > 0$


 \rightarrow the system self-multiplies the chain carriers and results in the <u>Chain Explosion</u>.

(7.1)

(Eigenvalues and Eigenvectors)



The figures show the numerical solution for the rate equations for reactions 1–3 for the 2:1 H₂-O₂ mixture at T = 1000 K, p = 1.01 kPa, $[O]_0 = 1.46 \times 10^{-11}$ mol m⁻³ and $[OH]_0 = 1.22 \times 10^{-10}$ mol m⁻³. The coefficients for the solution (7.2) at this condition are shown below.

1) Interpret the physical meanings of λ_1 and \mathbf{s}_1 in figure (*a*).

2) Interpret the physical meanings of λ_3 and \mathbf{s}_3 in figure (*b*).

- 1) λ_1 is the first order rate of exponential growth of [H], [O], and [OH] and s_1 represents the ratio of the concentrations of [H], [O], and [OH].
- 2) λ_3 is the first order decay of [H] and [OH] in the initial stage of reactions. s_1 represents the amplitudes.

* a_2 is relatively small and it is difficult to distinguish the contribution of this term in these figures.