# Homogeneous Kinetics

## 5. Elementary Reactions

## (Rate Equation)

Rate of reaction:  $mA + nB + ... \rightarrow iX + jY + ...$ 

$$\upsilon = -\frac{1}{m} \frac{d[A]}{dt} = -\frac{1}{n} \frac{d[B]}{dt} = \dots = \frac{1}{i} \frac{d[X]}{dt} = \frac{1}{j} \frac{d[Y]}{dt} = \dots$$

$$(5.1)$$

[A], [B], ...: concentrations of A, B, ...

Rate equation

$$v = k[A]^m[B]^n \cdots agen{5.2}$$

k: rate constant

#### Exercise 5.1

- 1) Write the rate equation for an irreversible reaction,  $A \to B$  (rate const. =  $k_1$ ), with respect to A, and solve the differential equation (rate equation) for the initial condition,  $[A] = [A]_0$  at t = 0.
- 2) Write the rate equation for an irreversible reaction,  $2A \rightarrow B$  (rate const. =  $k_2$ ), with respect to A, and solve it for the initial condition,  $[A] = [A]_0$  at t = 0.

#### Solution to exercise 5.1

- 1) rate equation:  $(v =) \frac{d[A]}{dt} = k_1[A]$ . solution:  $[A] = [A]_0 \exp(-k_1 t)$ .
- 2) rate equation:  $(v = ) \frac{1}{2} \frac{d[A]}{dt} = k_2[A]^2$ . solution:  $\frac{1}{[A]} = \frac{1}{[A]_0} + 2k_2t$  or  $[A] = \frac{[A]_0}{1 + 2k_2t[A]_0}$ .

## (Elementary Reaction)

 $\equiv$  Minimum step of reaction that obeys eq. (5.2)

Examples:

elementary reaction?

1) 
$$H_2 + Br_2 \rightarrow 2HBr$$
:  $v = \frac{1}{2} \frac{d[HBr]}{dt} \propto \frac{[H_2][Br_2]^{3/2}}{[Br_2] + c[HBr]}$  NO

· complex sequence of reactions:  $Br_2 \rightarrow 2Br$ ,  $Br + H_2 \rightleftharpoons HBr + H$ ,

$$H + Br_2 \rightarrow HBr + Br$$
, etc.

2) OH + H<sub>2</sub> 
$$\rightarrow$$
 H<sub>2</sub>O + H:  $v = \frac{d[H_2O]}{dt} = k[OH][H_2]$  YES

## Exercise 5.2

Argue whether the reaction,  $H_2 + I_2 \rightarrow 2HI$ , is an elementary reaction or not, from the following measurements for the initial rate of formation at 600 K.

| exp. | $[H_2]$                | $[I_2]$                | $\left. d[HI] / dt \right _{t=0}$ |
|------|------------------------|------------------------|-----------------------------------|
| #    | $/ \text{ mol m}^{-3}$ | $/ \text{ mol m}^{-3}$ | $/ \ mol \ m^{-3} \ s^{-1}$       |
| #1   | 0.72                   | 0.51                   | 0.175                             |
| #2   | 0.72                   | 1.02                   | 0.350                             |
| #3   | 1.44                   | 1.02                   | 0.700                             |

#### Solution to exercise 5.2

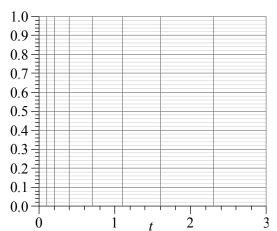
from #1 & #2, d[HI]/d $t \propto [I_2]$ ; from #2 & #3, d[HI]d $t \propto [H_2]$ . So,  $v \propto [H_2][I_2]$  and this reaction CAN to be an elementary reaction.

\* Eq. (5.2) may be accidentally satisfied. (but this is really an elementary reaction.)

## (Consecutive Reactions)

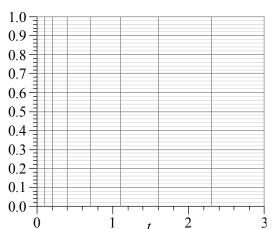
Rate equations for consecutive reactions,  $A \xrightarrow{k_1} B \xrightarrow{k_2} C$ , with respect to [A] and [B]

$$\frac{d[A]}{dt} = -k_1[A], \quad \frac{d[B]}{dt} = k_1[A] - k_2[B], \quad \frac{d[C]}{dt} = k_2[B]$$
 (5.3)


Solutions for  $k_1 \neq k_2$  and for the initial conditions, [A] = [A]<sub>0</sub> and [B] = [C] = 0 at t = 0

[A] = [A]<sub>0</sub> exp(
$$-k_1 t$$
), [B] =  $\frac{k_1 [A]_0}{k_1 - k_2} \{ \exp(-k_2 t) - \exp(-k_1 t) \}$ ,  
[C] = [A]<sub>0</sub> - [A] - [B] (5.4)

### Exercise 5.3


1) Fill the following table of solution (5.4) for  $k_1 = 5$ ,  $k_2 = 1$  and  $[A]_0 = 1$  and plot [A], [B] and [C].

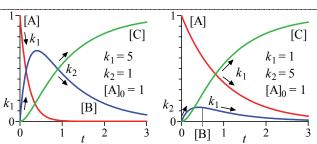
| t   | [A]  | [B]  | [C] $= 1 - [A] - [B]$ |
|-----|------|------|-----------------------|
| 0   | 1    | 0    | 0                     |
| 0.1 | 0.61 | 0.37 | 0.02                  |
| 0.2 | 0.37 | 0.56 | 0.07                  |
| 0.4 | 0.14 | 0.67 | 0.19                  |
| 0.7 | 0.03 | 0.58 | 0.39                  |
| 1.1 | 0    | 0.41 | 0.59                  |
| 1.6 | 0    | 0.25 | 0.75                  |
| 2.3 | 0    | 0.13 | 0.87                  |
| 3   | 0    | 0.06 | 0.94                  |



- 2) Describe which parts of the time-profile of [B] represent  $k_1$  and  $k_2$ .
- 3) Fill the following table of solution (5.4) for  $k_1 = 1$ ,  $k_2 = 5$  and  $[A]_0 = 1$  and plot.

| t   | [A]  | [B]  | [C] $= 1 - [A] - [B]$ |
|-----|------|------|-----------------------|
| 0   | 1    | 0    | 0                     |
| 0.1 | 0.90 | 0.07 | 0.03                  |
| 0.2 | 0.82 | 0.11 | 0.07                  |
| 0.4 | 0.67 | 0.13 | 0.20                  |
| 0.7 | 0.50 | 0.12 | 0.38                  |
| 1.1 | 0.33 | 0.08 | 0.59                  |
| 1.6 | 0.20 | 0.05 | 0.75                  |
| 2.3 | 0.10 | 0.03 | 0.87                  |
| 3   | 0.05 | 0.01 | 0.94                  |
|     |      |      |                       |




4) Describe which parts of the time-profile of [B] represent  $k_1$  and  $k_2$ .

#### Solution to exercise 5.3

- 1) As shown in the figure to the right.
- 2) [B] rises with  $k_1$  ( $\tau_1 = k_1^{-1} = 0.2$ ) and decays with  $k_2$  ( $\tau_2 = k_2^{-1} = 1$ ).
- 3) As shown in the figure to the right.
- 4) [B] rises with  $k_2$  ( $\tau_2 = k_2^{-1} = 0.2$ ) and decays with  $k_1$  ( $\tau_1 = k_1^{-1} = 1$ ).



- \* Similar (same except for the height) solution for [B]!
- \* For [B],  $k_1$  &  $k_2$  look reversed when  $k_2 > k_1$ .

