3. Ideal Solution

(Solution Equilibrium of Gas)

In a solution equilibrium state of a gas into water, $A(g) \rightleftharpoons A(aq)$:

$$\mu(g) = \mu(aq) \tag{3.1}$$

For an ideal gas and an ideal solution [from (0.6) and (0.7)]:

$$-\Delta_{\rm sol}G^{\circ} = \mu^{\circ}(g) - \mu^{\circ}(\mathrm{aq}) = RT \ln K_{\rm sol}$$

$$(3.2)$$

where
$$K_{\rm sol} \equiv \frac{b/b}{p/p^{\circ}}$$

The Henry's law constant, $K_{\rm H}$, is often defined in the reverse way as,

$$p = K_{\rm H}b \tag{3.3}$$

$$K_{\rm H} = K_{\rm sol}^{-1} \tag{3.4}$$

Exercise 3.1

1) Compute the solution equilibrium constant of CO₂ into water, $K_{sol} = (b / b^{\circ}) / (p / p^{\circ})$, from the following standard Gibbs energies.

Δ	$_{\rm f}G^{\circ}(298~{\rm K})/{\rm kJ~mol^{-1}}$
$CO_2(g)$	-394.4
$CO_2(aq)$	-386.0

2) Compare the result with the well established Henry's law constant, $K_{\rm H} = 30.1$ bar kg mol⁻¹.

Solution to exercise 3.1

1) $\Delta_{sol}G^{\circ} = -386.0 - (-394.4) = 8.4 \text{ kJ mol}^{-1}$.

 $K_{\rm sol} = \exp(-\Delta_{\rm sol}G^{\circ} / RT) = \exp[-8400 / (8.3145 \times 298)] = 3.37 \times 10^{-2} [-] \text{ (or mol kg}^{-1} \text{ bar}^{-1})$

2) $K_{\rm H}$ from thermo data, $K_{\rm H} = K_{\rm sol}^{-1} = 29.7$ bar kg mol⁻¹, agrees well with the given $K_{\rm H} = 30.1$.

(Heat of Solution and Temperature Dependence)

The eq. (3.2) can be rewritten as,

$$K_{\rm sol} = \exp\left(\frac{\Delta_{\rm sol}S^{\circ}}{R}\right) \exp\left(-\frac{\Delta_{\rm sol}H^{\circ}}{RT}\right)$$
(3.5)

For $\Delta H < 0$ (exothermic) K^{\uparrow} as T^{\downarrow} , while for $\Delta H > 0$ (endothermic) K^{\uparrow} as T^{\uparrow} . (Le Chatelier's principle)

Exercise 3.2

The enthalpy of solution of H₂ into water is $\Delta_{sol}H^\circ = -4.2 \text{ kJ mol}^{-1}$ and the solution equilibrium constant is $K_{sol} = 7.81 \times 10^{-4} \text{ mol kg}^{-1} \text{ bar}^{-1}$ at 298 K. Estimate K_{sol} at 10 °C (283 K).

Solution to exercise 3.2

$$\frac{K_{\text{sol, 283}}}{K_{\text{sol, 298}}} = \exp\left[-\frac{\Delta_{\text{sol}}H^{\circ}}{R}\left(\frac{1}{283} - \frac{1}{298}\right)\right] = \exp\left[-\frac{-4.2 \times 1000}{8.3145}\left(\frac{1}{283} - \frac{1}{298}\right)\right] = 1.094$$
Then, $K_{\text{sol, 283}} = 7.81 \cdot 10^{-4} \times 1.094 = \frac{8.5_4}{2.54} \times 10^{-4}$ [-] (or mol kg⁻¹ bar⁻¹).
cf.) experimental = $\frac{8.72}{2.5} \times 10^{-4}$
 K_{sol} increases \uparrow as *T* decreases \downarrow . (consistent with $\Delta H < 0$; exothermic)

(alternative solution) $\Delta_{sol}G^{\circ} = -RT \ln K_{sol} = -8.3145 \cdot 298 \ln(7.81 \times 10^{-4}) = 17.73 \text{ kJ mol}^{-1}.$ $\Delta_{sol}S^{\circ} = (\Delta_{sol}H^{\circ} - \Delta_{sol}G^{\circ}) / T = (-4.2 - 17.73) \times 1000 / 298 = -73.59 \text{ J K}^{-1} \text{ mol}^{-1}.$ By assuming constant $\Delta_{sol}H^{\circ}$ and $\Delta_{sol}S^{\circ}$, $\Delta_{sol}G^{\circ}(283 \text{ K}) = -4.2 - 283 \times (-73.59) / 1000 = 16.63 \text{ kJ mol}^{-1}$ $K_{sol} = \exp(-\Delta_{sol}G^{\circ} / RT) = \exp[-16630 / (8.3145 \times 283)] = 8.5_2 \times 10^{-4} \text{ [-] (or mol kg}^{-1} \text{ bar}^{-1}).$

Exercise 3.3

Estimate the solubility $S \pmod{\text{kg}^{-1}}$ of AgCl(s) at 50 °C from the following data.

(298 K)	$\Delta_{\rm f} H^{\circ} / { m kJ} { m mol}^{-1}$	$S_{\rm m}^{\circ}$ / J K ⁻¹ mol ⁻
AgCl(s)	-127.1	96.2
$Ag^+(aq)$	105.6	72.7
Cl ⁻ (aq)	-167.2	56.5

Solution to exercise 3.3

$$\begin{split} &\Delta_{\rm sol}H^\circ = (105.6 - 167.2) - (-127.1) = 65.5 \text{ kJ mol}^{-1}, \\ &\Delta_{\rm sol}S^\circ = (72.7 + 56.6) - 96.2 = 33.0 \text{ J K}^{-1} \text{ mol}^{-1}. \\ &\text{at 50 °C}, S = \exp[(-65500 / 8.3145 / 323 + 33.0 / 8.3145) / 2] = \underline{3.68} \times 10^{-5} \text{ mol kg}^{-1} \\ &\text{at 25 °C}, S = \underline{1.31} \times 10^{-5} (\rightarrow \text{ exercise } 1.3) \\ & cf.) \text{ experimental: } \underline{3.81} \times 10^{-5} (50 \text{ °C}), \underline{1.35} \times 10^{-5} (25 \text{ °C}) \\ &\text{Solubility S increases $\widehat{}$ as T increases $\widehat{}$. (consistent with $\Delta H > 0$; endothermic)} \end{split}$$

(Activity)

Except for the very dilute solution such as in exercise 3.3, the solution equilibrium of the electrolyte, AB(s) \rightleftharpoons A⁺(aq) + B⁻(aq), should be written with the mean activity coefficient, γ , as,

$$-\Delta_{\mathbf{r}}G^{\circ} = \mu^{\circ}[\mathbf{AB}(\mathbf{s})] - \mu^{\circ}[\mathbf{A}^{+}(\mathbf{aq})] - \mu^{\circ}[\mathbf{B}^{-}(\mathbf{aq})]$$
$$= RT \ln\left(\frac{\gamma b[\mathbf{A}^{+}(\mathbf{aq})]}{b^{\circ}}\frac{\gamma b[\mathbf{B}^{-}(\mathbf{aq})]}{b^{\circ}}\right)$$
(3.6)

Exercise 3.4

1) Assuming the ideal solution, calculate the solubility $S \pmod{\text{kg}^{-1}}$ of KCl(s) from the following data.

	$\Delta_{\rm f}G^{\circ}(298~{ m K})$ / kJ mol ⁻¹
KCl(s)	-409.1
$K^+(aq)$	-283.3
Cl ⁻ (aq)	-131.2

2) Evaluate the mean activity coefficient, γ , for the saturated KCl solution by using the measured solubility $S = 4.769 \text{ mol kg}^{-1}$.

Solution to exercise 3.4
1) Δ_rG° = (-283.3) + (-131.2) - (-409.1) = -5.4 kJ mol⁻¹ b[K⁺(aq)]b[Cl⁻(aq)] = exp(-Δ_rG° / RT) = exp[5.4×1000 / (8.3145×298)] = 8.84 mol² kg⁻² S = (8.84)^{1/2} = <u>2.97</u> mol kg⁻¹
2) γ = 2.97 / 4.769 = <u>0.623</u> Trend of solubility *S* against *T* for small |Δ*H*| dissolution process often disturbed (looks reversed) by *T*-dep of γ.