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22..  CChheemmiiccaall  aanndd  PPhhaassee  EEqquuiilliibbrriiuumm  
〈Gas-phase Chemical Equilibrium〉 

In the equilibrium state of a gas-phase reaction, A(g) + B(g) →← C(g), 
μ [C(g)] = μ [A(g)] + μ [B(g)] (2.1) 

For an ideal gas, by using (0.6), 
–ΔrG° = μ° [A(g)] + μ° [B(g)] – μ° [C(g)] = RT lnK (2.2) 

where 
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Exercise 2.1 

1) Calculate the equilibrium constant 2/1
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ppK =  at 3000 K for the reaction, 

H2(g) + 2
1 O2(g) →← H2O(g), from the following data. 

 

 T / K ΔfG°[H2O(g)] / kJ mol–1 [CEA2] 
   
 3000 –77.49 
   

 

2) Calculate p(O2) in equilibrium with H2O of partial pressure 0.1 bar at 3000 K, by assuming p(H2) 

= 2p(O2). Also, calculate the relative extent of the reaction 
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Solution to exercise 2.1 
1) K = exp(–ΔrG° / RT) = exp[77.49×1000 / (8.3145×3000)] = 22.35 [-] (or bar–1/2) 
2) Let x = p(O2)/p°. → x = (0.05 / K )2/3 = 0.0171, p(O2) = 0.0171 bar, ξr = 0.745 
 

 At high temperatures, the reaction cannot be "completed" even in the equilibrium state. 
  

 

〈Phase Equilibrium between Condensed Phases〉 
On the boundary between phase 1 and 2 in p–T plane, 

dμ (1) = dμ (2) (2.3) 
From (0.3) and (0.4), one obtains Vm(1)dp – Sm(1)dT = Vm(2)dp – Sm(2)dT, and then, 
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where ΔtrsS = Sm(2) – Sm(1), ΔtrsV = Vm(2) – Vm(1) 
From the definition of the entropy, 
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Exercise 2.2 
1) Calculate the standard entropy of fusion ΔfusS° of the ice from the standard enthalpy of fusion, 

ΔfusH° = 6.008 kJ mol–1, at 0 °C. 
2) Estimate the melting point of ice at a pressure 136 bar from the ΔfusS above and the following 

densities of ice and water.  Ignore the pressure dependence of ΔfusS and density. 
 

  ρ(273.15 K, 1 bar) / g cm–3 
   
 H2O(l) 0.9998 
 H2O(s) 0.9168 
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Solution to exercise 2.2 
1) ΔfusS° = 6.008×1000 / 273.15 = 22.00 J K–1 mol–1 
2) ΔfusV° = (18.02/0.9998) – (18.02/0.9168) = –1.632 cm3 mol–1 = –1.632×10–6 m3 mol–1 

dT / dp = –1.632×10–6 / 22.00 = –7.418×10–8 K Pa–1 = –7.418×10–3 K bar–1 
dT = –7.418×10–3 × (136 – 1) = –1.00 K  よって Tfus(136 bar) ~ –1.00 °C (272.15 K) 

  
 

〈Phase Equilibrium between Gas and Condensed Phases〉 
On the boundary between a condensed phase 1 and a gas phase, 

μ (1) = μ (g) (2.6) 
By ignoring the small pressure dependence of the chemical potential of a condensed phase, and using 
(0.6), 

–ΔvapG° = μ °(1) – μ °(g) = RT ln(p / p°) (2.7) 
   
Exercise 2.3 
1) Calculate the vapor pressure of water at 298 K from the following data. 
2) Estimate the vapor pressure of water at 100 °C (= 373 K) assuming that ΔvapH° and ΔvapS° are 

independent of temperature. 
 

 (298 K) ΔfH° / kJ mol–1 Sm° / J K–1 mol–1 Cp, m° / J K–1 mol–1 
   
 H2O(l) –285.8 69.9 75.3 
 H2O(g) –241.8 188.8 33.6 
   

 
 

Solution to exercise 2.3 
1) ΔvapH° = –241.8 – (–285.8) = 44.0 kJ mol–1, ΔvapS° = 188.8 – 69.9 = 118.9 J K–1 mol–1 

ΔvapG° = ΔvapH° – TΔvapS° = 44.0 – 298·118.9/1000 = 8.57 kJ mol–1 
p / p° = exp(–8.57×1000 / 8.3145·298) = 3.15×10–2, thus p = 0.0315 bar 

 

 * The pressure dependence of μ[H2O(l)] is, from (0.9), Vm(p – p°) = 1.8×10–5(3160–100000) = –1.7 J mol–1, 
 which is smaller than the smallest significant digit of ΔfG°. 

 

2) ΔvapG° = ΔvapH° – TΔvapS° = 44.0 – 373·118.9/1000 = –0.35 kJ mol–1 
p / p° = exp(+0.35×1000 / 8.3145·373) = 1.119, thus p = 1.119 bar (10% higher than 1 atm!) 

 
 

Better approximation can be achieved by taking into account the temperature dependence of ΔvapH° and 
ΔvapS°, but assuming constant ΔvapCp, m° = Cp, m°(g) – Cp, m°(1). 

ΔvapH°(T ) = ΔvapH°(T *) + ΔvapCp, m° (T – T *) (2.8) 

ΔvapS°(T ) = ΔvapS°(T *) + ΔvapCp, m° ⎟
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where T * is a reference temperature. 
   
Exercise 2.4 

Estimate the vapor pressure of water at 100 °C (= 373 K) by using Cp, m° shown in the table of 
Exercise 2.3. 

 
 

Solution to exercise 2.4 
 ΔCp = 33.6 – 75.3 = –41.7 J K–1 mol–1. 

ΔvapH° = 44.0 – 41.7 × (373 – 298) / 1000 = 40.87 kJ mol–1. 
ΔvapS° = 118.9 – 41.7 ln(373 / 298) = 109.54 J K–1 mol–1. 
ΔvapG° = 40.87 – 373 × 109.54 / 1000 = 0.012 kJ mol–1. 
p / p° = exp(–0.012×1000 / 8.3145·373) = 0.996, thus p = 0.996 bar (1.7% smaller than 1 atm) 

  
 


