2. Chemical and Phase Equilibrium

(Gas-phase Chemical Equilibrium)

In the equilibrium state of a gas-phase reaction, $A(g) + B(g) \rightleftharpoons C(g)$,

$$\mu[C(g)] = \mu[A(g)] + \mu[B(g)]$$
(2.1)

For an ideal gas, by using (0.6),

$$-\Delta_{\mathbf{r}}G^{\circ} = \mu^{\circ} \left[\mathbf{A}(\mathbf{g}) \right] + \mu^{\circ} \left[\mathbf{B}(\mathbf{g}) \right] - \mu^{\circ} \left[\mathbf{C}(\mathbf{g}) \right] = RT \ln K$$

$$(2.2)$$

where
$$K \equiv \frac{PC'P}{(p_A / p^\circ)(p_B / p^\circ)}$$

Exercise 2.1

- 1) Calculate the equilibrium constant $K = \frac{p(H_2O)/p^\circ}{[p(H_2)/p^\circ][p(O_2)/p^\circ]^{1/2}}$ at 3000 K for the reaction,
 - $H_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons H_2O(g)$, from the following data.

T / K	$\Delta_{\rm f} G^{\circ}[{ m H}_2{ m O}({ m g})] / { m kJ} { m mol}^{-1}$	[CEA2]
3000	-77.49	

2) Calculate $p(O_2)$ in equilibrium with H₂O of partial pressure 0.1 bar at 3000 K, by assuming $p(H_2)$

= 2p(O₂). Also, calculate the relative extent of the reaction $\xi_r = \frac{p(H_2O)}{p(H_2) + p(H_2O)}$.

Solution to exercise 2.1

- 1) $K = \exp(-\Delta_r G^\circ / RT) = \exp[77.49 \times 1000 / (8.3145 \times 3000)] = 22.35 [-] (or bar^{-1/2})$
- 2) Let $x = p(O_2)/p^\circ$. $\rightarrow x = (0.05 / K)^{2/3} = 0.0171$, $p(O_2) = 0.0171$ bar, $\xi_r = 0.745$

At high temperatures, the reaction cannot be "completed" even in the equilibrium state.

(Phase Equilibrium between Condensed Phases)

On the boundary between phase 1 and 2 in p-T plane,

$$\mathrm{d}\mu(1) = \mathrm{d}\mu(2) \tag{2.3}$$

From (0.3) and (0.4), one obtains $V_m(1)dp - S_m(1)dT = V_m(2)dp - S_m(2)dT$, and then,

$$\frac{dp}{dT} = \frac{\Delta_{trs}S}{\Delta_{trs}V} \quad (Clapeyron equation)$$
(2.4)

where
$$\Delta_{\text{trs}} S = S_{\text{m}}(2) - S_{\text{m}}(1), \ \Delta_{\text{trs}} V = V_{\text{m}}(2) - V_{\text{m}}(1)$$

From the definition of the entropy,

$$\Delta_{\rm trs} S = \frac{\Delta_{\rm trs} H}{T_{\rm trs}} \tag{2.5}$$

Exercise 2.2

- 1) Calculate the standard entropy of fusion $\Delta_{\text{fus}}S^{\circ}$ of the ice from the standard enthalpy of fusion, $\Delta_{\text{fus}}H^{\circ} = 6.008 \text{ kJ mol}^{-1}$, at 0 °C.
- 2) Estimate the melting point of ice at a pressure 136 bar from the $\Delta_{fus}S$ above and the following densities of ice and water. Ignore the pressure dependence of $\Delta_{fus}S$ and density.

-3

	ρ (273.15 K, 1 bar) / g cm ⁻
$H_2O(l)$	0.9998
$H_2O(s)$	0.9168

Solution to exercise 2.2 1) $\Delta_{fus}S^{\circ} = 6.008 \times 1000 / 273.15 = 22.00 \text{ J K}^{-1} \text{ mol}^{-1}$ 2) $\Delta_{fus}V^{\circ} = (18.02/0.9998) - (18.02/0.9168) = -1.632 \text{ cm}^3 \text{ mol}^{-1} = -1.632 \times 10^{-6} \text{ m}^3 \text{ mol}^{-1}$ $dT / dp = -1.632 \times 10^{-6} / 22.00 = -7.418 \times 10^{-8} \text{ K Pa}^{-1} = -7.418 \times 10^{-3} \text{ K bar}^{-1}$ $dT = -7.418 \times 10^{-3} \times (136 - 1) = -1.00 \text{ K}$ $\Rightarrow \forall T_{fus}(136 \text{ bar}) \sim -1.00 \text{ °C} (272.15 \text{ K})$

(Phase Equilibrium between Gas and Condensed Phases)

On the boundary between a condensed phase 1 and a gas phase,

$$\mu(1) = \mu(g) \tag{2.6}$$

By ignoring the small pressure dependence of the chemical potential of a condensed phase, and using (0.6),

$$\Delta_{\rm vap}G^{\circ} = \mu^{\circ}(1) - \mu^{\circ}(g) = RT \ln(p / p^{\circ})$$
(2.7)

Exercise 2.3

- 1) Calculate the vapor pressure of water at 298 K from the following data.
- 2) Estimate the vapor pressure of water at 100 °C (= 373 K) assuming that $\Delta_{vap}H^{\circ}$ and $\Delta_{vap}S^{\circ}$ are independent of temperature.

(298 K)	$\Delta_{ m f} H^{\circ}$ / kJ mol ⁻¹	$S_{\rm m}^{\rm o}$ / J K ⁻¹ mol ⁻¹	$C_{p,\mathrm{m}}^{\circ}$ / J K ⁻¹ mol ⁻¹
$H_2O(l)$	-285.8	69.9	75.3
$H_2O(g)$	-241.8	188.8	33.6

Solution to exercise 2.3

 Δ_{vap}H° = -241.8 - (-285.8) = 44.0 kJ mol⁻¹, Δ_{vap}S° = 188.8 - 69.9 = 118.9 J K⁻¹ mol⁻¹ Δ_{vap}G° = Δ_{vap}H° - TΔ_{vap}S° = 44.0 - 298·118.9/1000 = 8.57 kJ mol⁻¹ p / p° = exp(-8.57×1000 / 8.3145·298) = 3.15×10⁻², thus p = 0.0315 bar
 * The pressure dependence of μ[H₂O(1)] is, from (0.9), V_m(p - p°) = 1.8×10⁻⁵(3160-100000) = -1.7 J mol⁻¹, which is smaller than the smallest significant digit of Δ_tG°.
 Δ_{vap}G° = Δ_{vap}H° - TΔ_{vap}S° = 44.0 - 373·118.9/1000 = -0.35 kJ mol⁻¹ p / p° = exp(+0.35×1000 / 8.3145·373) = 1.119, thus p = 1.119 bar (10% higher than 1 atm!)

Better approximation can be achieved by taking into account the temperature dependence of $\Delta_{vap}H^{\circ}$ and $\Delta_{vap}S^{\circ}$, but assuming constant $\Delta_{vap}C_{p, m}^{\circ} = C_{p, m}^{\circ}(g) - C_{p, m}^{\circ}(1)$.

$$\Delta_{\text{vap}}H^{\circ}(T) = \Delta_{\text{vap}}H^{\circ}(T^*) + \Delta_{\text{vap}}C_{p,\,\text{m}}^{\circ}(T-T^*)$$
(2.8)

$$\Delta_{\rm vap}S^{\circ}(T) = \Delta_{\rm vap}S^{\circ}(T^*) + \Delta_{\rm vap}C_{p,\,\rm m}^{\circ} \ln\left(\frac{T}{T^*}\right)$$
(2.9)

where T^* is a reference temperature.

Exercise 2.4

Estimate the vapor pressure of water at 100 °C (= 373 K) by using $C_{p, m}$ ° shown in the table of Exercise 2.3.

Solution to exercise 2.4 $\Delta C_p = 33.6 - 75.3 = -41.7 \text{ J K}^{-1} \text{ mol}^{-1}.$ $\Delta_{\text{vap}} H^\circ = 44.0 - 41.7 \times (373 - 298) / 1000 = 40.87 \text{ kJ mol}^{-1}.$ $\Delta_{\text{vap}} S^\circ = 118.9 - 41.7 \ln(373 / 298) = 109.54 \text{ J K}^{-1} \text{ mol}^{-1}.$ $\Delta_{\text{vap}} G^\circ = 40.87 - 373 \times 109.54 / 1000 = 0.012 \text{ kJ mol}^{-1}.$ $p / p^\circ = \exp(-0.012 \times 1000 / 8.3145 \cdot 373) = 0.996, \text{ thus } p = 0.996 \text{ bar } (1.7\% \text{ smaller than 1 atm})$