4. Surface and Particle Equilibrium

(Reactive Condensation)

In the equilibrium state of AB(s) $\leq A(g) + B(g)$, $\mu[AB(s)] = \mu[A(g)] + \mu[B(g)]$ (4.1) By ignoring the pressure dependence of $\mu[AB(s)]$ and using (0.6),

$$-\Delta_{\rm r} G^{\circ} = \mu^{\circ} [{\rm AB}({\rm s})] - \mu^{\circ} [{\rm A}({\rm g})] - \mu^{\circ} [{\rm B}({\rm g})] = RT \ln K$$
(4.2)

where
$$K = \frac{p_A}{p^\circ} \frac{p_B}{p^\circ}$$

Exercise 4.1

1) Compute the equilibrium constant for NH₄NO₃(s) \Rightarrow NH₃(g) + HNO₃(g) from the following data. $\Delta_4 G^{\circ}(298 \text{ K}) / \text{kL mol}^{-1}$

$\Delta_{\rm f}$ O	(2)0 K/(K)	moi
NH ₄ NO ₃ (s)	-183.9	
$NH_3(g)$	-16.5	
$HNO_3(g)$	-73.9	[NIST]

2) Calculate the minimum *p* at which NH₄NO₃(s) starts to form for the case $p(NH_3) = p(HNO_3) = p$.

Solution to exercise 4.1 1) $\Delta_r G^\circ = (-16.5) + (-73.9) - (-183.9) = 93.5 \text{ kJ mol}^{-1}.$ $K = \exp(-93.5 \times 1000 / 8.3145 \cdot 298) = 4.09 \times 10^{-17}.$ 2) $p = K^{1/2} = 6.4 \times 10^{-9} \text{ bar} (\sim 6.3 \text{ ppb})$

(Surface Tension)

A work dw necessary to increase the surface area by $d\sigma$ is given as,

 $dw = \gamma d\sigma$

(4.3)

where γ is the surface tension with a unit of J m⁻² = N m⁻¹. The difference between the pressure inside a spherical droplet (radius *r*), $p_{l, \text{droplet}}$, and the ambient pressure, p_{a} , is given by,

$$p_{1, \text{droplet}} - p_a = \frac{2\gamma}{r}$$
 (Laplace equation) (4.4)

Exercise 4.2

1) Compute the pressure difference, $p_{l, droplet} - p_a$, for water droplets with radii 0.1 µm and 10 nm from the following value.

$\gamma(298 \text{ K}) / \text{N m}^{-1}$	
water	7.2×10^{-2}

2) Estimate the depression of the freezing point of these water droplets. Assume γ is independent of temperature.

Solution to exercise 4.2 1) $r = 0.1 \ \mu\text{m}: p_{1, \text{droplet}} - p_a = (2 \times 7.2 \times 10^{-2}) / 0.1 \times 10^{-6} / 1 \times 10^5 = 14.4 \text{ bar.}$ $r = 10 \ \text{nm}: p_{1, \text{droplet}} - p_a = (2 \times 7.2 \times 10^{-2}) / 10 \times 10^{-9} / 1 \times 10^5 = 144 \text{ bar.}$ 2) By using the result of exercise 2.2, $dT / dp = -7.418 \times 10^{-3} \text{ K bar}^{-1}$, $r = 0.1 \ \mu\text{m}: \Delta T_f = -7.418 \times 10^{-3} \times 14.4 = -0.107 \text{ K}$ $r = 10 \ \text{nm}: \Delta T_f = -7.418 \times 10^{-3} \times 144 = -1.07 \text{ K}$ * The freezing point depression of water droplet comes from the fact $V_m(s) > V_m(1)$. For most of the metals, $V_m(s) < V_m(1)$ and the freezing point depression cannot be explained by surface tension.

(Vapor Pressure above Droplet Surface)

Below, p^* and p denote the vapor pressures above a plane surface and the droplet surface, respectively. By equating the chemical potentials in liquid and gas phases, and using (0.9) and (0.6),

$$V_{\rm m} \, \frac{2\gamma}{r} = RT \ln\!\left(\frac{p}{p^*}\right) \tag{4.5}$$

where $V_{\rm m}$ is the molar volume of the liquid. By a transformation one can obtain,

$$p = p^* \exp\left(\frac{2\gamma V_{\rm m}}{rRT}\right)$$
 (Kelvin equation) (4.6)

Exercise 4.3

Compute the supersaturation [%] = 100 ($p / p^* - 1$) of the water vapor above the surfaces of water droplet of radii 0.1 µm and 10 nm. Use the density of water $\rho = 0.997$ g cm⁻³.

Solution to exercise 4.3 $V_{\rm m} = 18.02 / 0.997 = 18.07 \text{ cm}^3 \text{ mol}^{-1} = 1.807 \times 10^{-5} \text{ m}^3 \text{ mol}^{-1}$ $r = 0.1 \ \mu\text{m}: p / p^* = \exp[2 \times 7.2 \times 10^{-2} \times 1.807 \times 10^{-5} / (0.1 \times 10^{-6} \times 8.3145 \times 298)] = 1.0106$ supersaturation: 1.06 % $r = 10 \ \text{nm}: p / p^* = \exp[2 \times 7.2 \times 10^{-2} \times 1.807 \times 10^{-5} / (10 \times 10^{-9} \times 8.3145 \times 298)] = 1.111$ supersaturation: 11.1 % * homogeneous nucleation is expected to require very large supersaturation such as > 200%.

(Cloud Condensation)

In the atmosphere, cloud is formed from nuclei (aerosols). For water-soluble nuclei, the vapor pressure above the droplet is also affected by the Raoult's law,

 $p = p^* (1 - x) \tag{4.7}$

where p^* is the vapor pressure of pure solvent and x is the mole fraction of solute. By combining with the Kelvin effect (4.6),

$$\ln \frac{p}{p^*} = \frac{2\gamma V_{\rm m}}{rRT} + \ln(1-x)$$
(4.8)

Exercise 4.4

Compute the supersaturation (%) of the water vapor above the surface of water droplet of radius 0.1 μ m containing sulfuric acid by mole fraction 1.0%. Assume the same γ , and $V_{\rm m}$, as water and the complete dissociation of sulfuric acid.

Solution to exercise 4.4

 $p / p^* = [99/(99+1\times3)] \exp[2 \times 7.2 \times 10^{-2} \times 1.807 \times 10^{-5} / (0.1 \times 10^{-6} \times 8.3145 \times 298)] = 0.9808$ supersaturation: -1.92 %

* This droplet can grow at humidity > 98.1%, non-supersaturation condition.