III. 分子間相互作用

9. 分子の極性

9.1 ミクロな極性

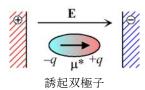
〈永久双極子モーメント〉

$$\boldsymbol{\mu} = q\mathbf{r} \tag{9.1}$$

単位:D(デバイ)=3.33564×10⁻³⁰Cm

1 D = 10^{-18} Fr cm, 1 Fr = 10 C / c_0 [cm s⁻¹] = 3.33564×10^{-10} C 1 Å 離れた -e と $e \rightarrow 4.80321$ D, 1 D = 0.20819 e Å

(誘起双極子)


$$\mu^* = \alpha \mathbf{E} \tag{9.2}$$

E: 電場, α: 分極率 [C V⁻¹ m² = F m²]

分極率体積

$$\alpha' = \frac{\alpha}{4\pi\varepsilon_0} \tag{9.3}$$

 $arepsilon_0$: 真空の誘電率 [F m $^{-1}$]

9.2 マクロな物性

 \langle 誘電率 $\varepsilon \rangle$

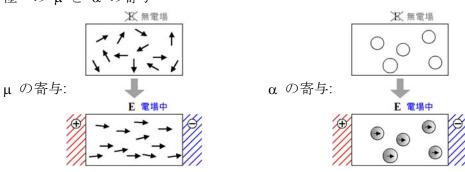
単位: F m-1

電荷 q_1, q_2 の相互作用ポテンシャル

$$V = \frac{q_1 q_2}{4\pi\varepsilon r} \tag{9.4}$$

比誘電率

$$\varepsilon_{\rm r} = \frac{\varepsilon}{\varepsilon_0} = \frac{C}{C_0}$$


$$C: 静電容量$$
(9.5)

〈屈折率〉

$$n_{\rm r} = \frac{c_0}{c} = \varepsilon_{\rm r}^{1/2} \tag{9.6}$$

 c_0 : 真空中の光速 c: 媒質中の光速 *Maxwell 方程式から導かれる

分極へのμとαの寄与

〈Debye の式〉

$$\frac{\varepsilon_{\rm r} - 1}{\varepsilon_{\rm r} + 2} = \frac{\rho P_{\rm m}}{M} \tag{9.7}$$

 $P_{\rm m}$: モル分極 $[{
m m}^3\ {
m mol}^{-1}]$, M: モル質量 $[{
m kg\ mol}^{-1}]$, ho: 密度 $[{
m kg\ m}^{-3}]$

$$P_{\rm m} = \frac{N_{\rm A}}{3\varepsilon_0} \left(\alpha + \frac{\mu^2}{3k_{\rm B}T} \right) \tag{9.8}$$

〈Clausius-Mossotti の式〉

[無極性分子·高周波電場(光)]

(9.8) の μ の項がなくなる (高周波では分子配向は電場に追随できない)

$$\frac{\varepsilon_{\rm r} - 1}{\varepsilon_{\rm r} + 2} = \frac{\rho N_{\rm A} \alpha}{3M\varepsilon_0} = \frac{4\pi \rho N_{\rm A} \alpha'}{3M} \tag{9.9}$$

問題 9.1

 H_2O の可視光周波数における分極率体積は $\alpha'=1.48$ ų である。 水の屈折率 n_r を求めよ。 水の密度は $\rho=0.997$ g cm⁻³ (25 °C) である。

$$n_{\rm r} = \varepsilon_{\rm r}^{1/2} \tag{9.6}$$

$$\frac{\varepsilon_{\rm r} - 1}{\varepsilon_{\rm r} + 2} = \frac{4\pi\rho N_{\rm A}\alpha'}{3M} \tag{9.9}$$

* 必要であれば以下を用いよ。

 $N_{\rm A}$ (アボガドロ定数) = 6.0221 × 10^{23} mol⁻¹,

 $M_{\rm H}({\rm H}$ 原子の標準モル質量) = 1.008 g mol $^{-1}$, $M_{\rm O}({\rm O}$ 原子の $^{\prime\prime}$) = 15.999 g mol $^{-1}$.

(解)

(9.9) 式の右辺を
$$A$$
 とおくと、 $\varepsilon_{\rm r} = \frac{2A+1}{1-A}$. (9.6) から $n_{\rm r} = \left(\frac{2A+1}{1-A}\right)^{1/2}$. 水について

 $A = 4 \times 3.1416 \times 0.997 \cdot 10^{3} \times 6.0221 \cdot 10^{23} \times 1.48 \times 10^{-30} / (3 \times 18.015 \cdot 10^{-3}) = 0.20661,$ $n_{\rm r} = \left[(2 \cdot 0.20661 + 1) / (1 - 0.20661) \right]^{1/2} = (1.781_{2})^{1/2} = 1.33_{46}$

[答]
$$n_{\rm r} = 1.33$$