3. 二原子分子の回転

3.1 剛体回転子近似
二原子分子の慣性モーメント

\[I = \mu r^2 \]

\(\mu \)：換算質量 ...(2.3) 式

\[E = \frac{\hbar}{2I} \]

\[B = \frac{\hbar}{4\pi c_0 J} \]

\[B = \frac{\hbar^2}{2I} \]

エネルギー準位

回転運動 → 量子化 (cf. Atkins 9 章* (6版 12章))

回転エネルギー準位 (二次元回転子)

\[F(J) = BJ(J+1), J = 0, 1, 2, \ldots \]

\[B = \frac{\hbar}{2J} \]

回転運動はその自由度を「次元」とするので、それぞれ、
一次元回転子/二次元回転子に対応する

回転運動を書き表すことができる (右図を参照)

回転波動関数と多重度

波動関数： 球面調和関数 (= 原子軌道の角度成分)

多重度： 同じエネルギー固有値を持つ、異なる解 (Schrödinger 方程式の) の数

\[g_J = 2J + 1 \]

\[J = 1 \] の回転状態の多重度は 3 \(\leftrightarrow \) \(l=1 \) の原子軌道(p 軌道) は 3 重に縮退 (p_x, p_y, p_z)

→ 統計力学的に \(J = 0 \) (g_1 = 1) より 3 倍存在しやすい

\[\sim s \text{ 軌道} \ (l = 0) \text{ 非縮退} \]

\[\sim p \text{ 軌道} \ (l = 1) \text{ 三重縮退} \]

\[\sim d \text{ 軌道} \ (l = 2) \text{ 五重縮退} \]

\(d_{2s}, d_{2p}, d_{3s}, d_{3p}, d_{3d}, d_{3f}, d_{4s}, d_{4p}, d_{4d}, d_{4f}, d_{4g}, d_{5s}, d_{5p}, d_{5d}, d_{5f} \)
3.2 純回転遷移

永久双極子モーメントを持つ ↔ 純回転遷移活性
ex.) 等核二原子分子 (N2, O2, etc.) は不活性

選択則 (↔ 遷移双極子モーメント)
\[\Delta J = \pm 1 \]
(3.6)

遷移波数 \((J+1) \leftrightarrow J \)
\[v_{J+1,J} = 2B(J+1) \]
(3.7)

間隔 2B で観測される

3.1 12C16O の遠赤外吸収スペクトルから C-O 核間距離 \(r \) を求めよ。

\[\mu = \frac{m_1 m_2}{m_1 + m_2} \]
(2.3)

\[I = \mu^2 \]
(3.1)

\[B = \frac{\hbar}{4\pi^2 c_0 I} \] (波数単位)
(3.4) ただし \(\hbar = \frac{\hbar}{2\pi} \)

\[v_{J+1,J} = 2B(J+1) \]
(3.7)

* 必要であれば以下を用いよ。

\(c_0 \) (真空中の光速) = 2.9979 \times 10^8 \text{ m s}^{-1}, \quad \hbar \) (プランク定数) = 6.6261 \times 10^{-34} \text{ J s}, \quad N_A \) (アボガドロ定数) = 6.0221 \times 10^{23} \text{ mol}^{-1}, \quad M_{\text{C-12}} \) (C 原子のモル質量) = 12 \text{ g mol}^{-1}, \quad M_{\text{O-16}} \) (O 原子の質量) = 15.995 \text{ g mol}^{-1}.

(解)
1) \(B \) を求める。\(J = 4 \leftrightarrow 3 \) (15.38 cm\(^{-1}\)) から \(\tilde{\nu}_{4,3} = 8B = 15.38 \text{ cm}^{-1} \rightarrow B = 1.9225 \text{ cm}^{-1} \). \(J = 10 \leftrightarrow 9 \) (38.41 cm\(^{-1}\)) から \(\tilde{\nu}_{10,9} = 20B = 38.41 \text{ cm}^{-1} \rightarrow B = 1.9205 \text{ cm}^{-1} \).
2) \(\mu = \frac{(12 \times 15.995) / (12 + 15.995)}{10^3 / N_A} = 1.1385 \times 10^{26} \text{ kg} \)
3) (3.1), (3.4) から \(r = \left(\frac{\hbar}{8\pi^2 c_0 B \mu} \right)^{1/2} B = 192.25 \text{ m}^{-1} \) を使うと

\[r = \left(\frac{6.6261 \times 10^{-34}}{8 \times 3.1416^2 \times 2.9979 \times 10^8 \times 192.25 \times 1.1385 \times 10^{26}} \right)^{1/2} = 1.1309 \times 10^{-10} \text{ m} \] (1.1309 Å).
3.3 回転ラマン散乱

二原子分子の分極率の角度依存

\[\alpha(\theta) = \alpha_0 + \frac{\alpha_\parallel - \alpha_\perp}{2} \cos 2\theta \quad (3.8) \]

分極率に異方性 ⇔ 回転ラマン活性

ex.) 二原子分子：活性

選択則

\[\Delta J = 0, \pm 2 \quad (3.9) \]

ラマンシフト波数 \((J + 2 \leftrightarrow J) \)

\[\tilde{v}_{J+2,J} = 2B(2J + 3) \quad (3.10) \]

間隔 \(4B \) で観測される

6.2 \(^{15}\)N\(_2\) 回転ラマンスペクトル

- 170〜170 cm\(^{-1}\) の領域にほぼ等間隔で回転線が観測される。
 St(J) は回転量子数 \(J + 2 \leftrightarrow J \) の散乱に相当し、ちょうど ±100 cm\(^{-1}\) に観測される回転線は St(12) である。
 - 回転線 St(J) の強度は \(J \) が偶数の場合と奇数の場合で異なり、
 J の増加に対して交互に強・弱を繰り返していることがわかる。
 これは核スピンの対称性に由来する現象であるがこの講義では扱わない。